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Abstract: Accurately estimating tree biomass is crucial for monitoring and managing forest resources,
and understanding regional climate change and material cycles. The additive model system has
proven reliable for biomass estimation in Chinese forestry since it considers the inherent correlation
among variables based on allometric equations. However, due to the increasing difficulty of obtaining
a substantial amount of sample data, estimating parameters for the additive model equations becomes
a formidable challenge when working with limited sample sizes. This study primarily focuses on
analyzing these parameters using data extracted from a smaller sample. Here, we established
two additive biomass model systems using the independent diameter and the combined variable that
comprises diameter and tree height. The logarithmic Nonlinear Seemingly Uncorrelated (logarithmic
NSUR) method and the Generalized Method of Moments (GMM) method were applied to estimate
the parameters of these models. By comparing four distinct approaches, the following key results
were obtained: (1) Both the GMM and logarithmic NSUR methods can yield satisfactory goodness
of fit and estimation precision for the additive biomass equations, with the root mean square error
(RMSE) were significantly low, and coefficients of determination (R2) were mostly higher than 0.9.
(2) Comparatively, examining the fitted curves of predicted values, the GMM method provided better
fitting than the NSUR method. The GMM method with the combined variable is the most suggested
approach for the calculation and research of single-tree biomass models with a small sample size.

Keywords: tree biomass; additive biomass model; GMM; log transformation; NSUR; small samples

1. Introduction

Tree biomass constitutes a fundamental attribute of forest ecosystems and serves as
a prerequisite for studying forest productivity, nutrient cycling, and estimating biomass
energy, carbon storage, and sequestration [1,2]. Accurately estimating tree biomass holds
significant importance in monitoring and managing forest resources, and plays a crucial
role in understanding regional climate change and material cycles [3,4]. The single-tree
biomass model has traditionally been a popular method for estimating tree biomass due to
its simplicity and flexibility. Numerous studies have revealed a strong correlation between
tree parameters (e.g., diameter at breast height, tree height, crown width, and wood
density) and the biomass of individual forest trees [5,6]. The allometric model approach,
which establishes a biomass model based on these tree parameters, represents a relatively
accurate and convenient research method [7]. This approach was included in the National
Forest Inventory estimation in the IPCC 2019 [8], which involved developing individual
tree biomass equations to estimate biomass in foliage, branches, stems, and other tree
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components. This approach ultimately provided estimates of aboveground biomass and
carbon content in live trees.

The error associated with estimating single-tree biomass using allometric models
primarily stems from several factors, including observation error, allometric model selection
and estimation, and the scale of the landscape. Among these factors, our research focuses on
the selection and estimation of the allometric model. The most commonly used allometric
equation for biomass estimation in Chinese forestry employs a power function. However,
if the biomass of each tree component is independently modeled using the power function,
the sum of the predicted biomass for each component will not equal the predicted total
biomass, indicating non-additivity [9]. Additionally, equations for each component are
typically estimated separately, without considering the inherent correlation among biomass
components measured in the same sample trees. To address this issue and account for
the inherent correlation between each component and total biomass, various forms of
compatible biomass models have been proposed domestically and internationally to ensure
additivity between component and total biomass [10,11]. Currently, there are two main
compatible biomass model systems: the additive model system and the aggregation model
system [12]. Comparative studies have shown that the additive model system offers
higher prediction accuracy and greater flexibility in applications [13], making it more easily
generalized in terms of model applicability. The model system achieves additivity between
the total biomass and components by basing it on each component, ensuring the total
equals the sum of the components.

The additive model system needs reliable parameter estimates to achieve accurate
single-tree biomass estimation. Currently, the Nonlinear Seemingly Uncorrelated (NSUR)
method is still considered the most reliable approach for estimating parameters in com-
patible biomass model systems [14,15]. This method can be applied to better understand
the correlation between partial equations and also helps ensure the compatibility between
different models and the effectiveness of parameter estimation, which usually employs
weighted regression to eliminate heteroscedasticity when the sample size is considerably
large [16]. However, there are just a few studies on estimating these parameters when the
sample size is limited, particularly in relation to the common issue of heteroscedasticity in
biomass models. As destructive sampling is often costly, labor-intensive, or ecologically
sensitive, obtaining large tree samples for allometric model estimation becomes increasingly
challenging. Consequently, it becomes extremely necessary to estimate parameters for
single-tree additive biomass models based on small sample data. Cai [17] pointed out that
the log transformation can eliminate heteroscedasticity in variance by linearizing the trend
of variation. This approach can be considered for parameter estimation in NSUR models
when dealing with small tree samples. Bi et al. [18] also pointed out that for a system of ad-
ditive biomass equations with heteroscedastic additive error terms, the generalized method
of moments (GMM) can be employed to obtain efficient parameter estimates without
specifying the nature of heteroscedasticity, thereby avoiding the difficulties associated.

This study is conducted based on the measured aboveground biomass data obtained
from 71 felled samples of four tree species in the Xiaolongshan area of Gansu Province.
After comparing the two model systems using the independent diameter variable and
the combined variable, respectively, as well as the two-parameter estimating methods of
logarithmic NSUR and GMM, we outlined a total of four distinct approaches and finally
identified the most effective method for constructing biomass models and estimating
parameters. This selection aims to provide valuable technical support for the calculation
and research of single-tree biomass models using a small sample size.

2. Materials and Methods
2.1. Study Site and Samples

The study is carried out in the Xiaolong Mountains, located in the southeastern
part of Gansu Province, China, within the geographical coordinates of 33◦31′–34◦34′ N,
104◦23′–106◦43′ E. Encompassing a vast area of 623,808 hectares, the region experiences a
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warm temperate climate with a semi-humid continental monsoon climate. The average
annual temperature ranges from 7 ◦C to 12 ◦C, and the annual rainfall varies between
460 mm and 800 mm [19].

The forest area in the Xiaolong Mountains covers 338,830 hectares, accounting for
a forest coverage rate of 62.46%. The total stocking volume of the forest amounts to
25,536,825 m3, with 86.9% comprising young and middle-aged forests, and the remaining
13.1% classified as near mature, mature, and overmature forests. The dominant tree species
primarily consist of hardwoods, with oak trees being the most abundant species in the area.
Sharp-tooth oaks and Chinese pines occupy approximately 71.52% of the total forest area.
Mixed miscellaneous forests are also commonly found in the region.

The dataset used in this research was obtained from a subset of data collected in the
Dang Chuan Forestry Centre, which falls under the jurisdiction of the Xiaolong Mountain
Forestry Bureau. The dataset includes descriptive statistics of 71 felled sample trees, com-
prising 10 Pinus armandii Franch (Adrien René Franchet, 1899), 10 Betula albo-sinensis Burk
(Ernst Adolf Burkart, 1979), 19 Pinus tabuliformis (Félix Guillaumin, 1954), and 32 Quer-
cus aliena var. acuteserrata (Takenoshin Nakai, 1919). After felling, the diameter at breast
height (DBH) and height of each selected tree were measured using a measuring tape.
Subsequently, the biomass of each tree was calculated after sampling and drying.

Upon felling the sample trees, the materials were meticulously separated into different
components following the procedure established by Soares and Schaeffer-Novelli [20].
These components included trunks, branches (with a diameter larger than 2.5 cm at the
base), leaves, and skins. The weight of each component was measured in the field, repre-
senting the wet biomass. Afterward, the components were subjected to oven drying so
we could determine their dry biomass. Finally, the total dry biomass was calculated by
summing the dry biomass of all the components. Summaries of sampled trees are shown in
Table 1.

Table 1. Descriptive statistics of the sample trees.

Species n DBH
(cm)

Height
(m)

Trunk
(kg)

Branch
(kg)

Leaf
(kg)

Skin
(kg)

Total Biomass
(kg)

Quercus aliena
var.acuteserrata 32 4.3–47.7 4.9–24 1.81–913.09 0.24–736.88 0.01–24.41 0.44–112.59 2.5–1786.97

Pinus tabuliformis 19 4.7–40 6–17.5 2.09–257.01 0.45–218.56 0.35–80.29 0.53–48.91 3.42–538.03
Pinus armandii Franch 10 4.6–38.3 3.5–15.8 1.24–347.83 1.99–189.43 0.47–27.46 0.38–42.46 4.08–566.41

Betula albo-sinensis Burk 10 6.5–44.2 7.9–22.3 5.35–698.91 1.34–374.76 0.50–22.77 1.22–97.36 8.41–1185.49

n is the number of samples and DBH is the diameter at breast height.

2.2. Methodologies
2.2.1. Additive Biomass Equations

In forestry studies in China, the power function is the most commonly used allometric
equation for estimating individual tree biomass [21,22]. Among the different error struc-
tures used in this scholarly field, the additive error structure is widely adopted due to its
popularity and ease of interpretation [23,24]. Therefore, the basic model for estimating
individual tree biomass is defined as follows:

Y = ea(X)b + ε, ε ∼ N
(

0, σ2
)

(1)

where Y represents the biomass of each component, including aboveground biomass, trunk
biomass, bark biomass, branch biomass, and leaf biomass (measured in kilograms). X rep-
resents the respective influencing variables, while a and b denote the model parameters.
The term ε represents the model error, assumed to follow a normal distribution.

In the biomass model above, the diameter at breast height (DBH) was first selected
as the primary variable due to its simplicity and practicality. To enhance the predictive
accuracy, tree height (H) can be paired with DBH, resulting in a combined predictor
variable known as D2H (or DBH2H, i.e., the product of DBH squared and H). Based on



Forests 2023, 14, 1655 4 of 14

data obtained from visual inspections of trunks, branches, leaves, and skin, two different
biomass equations with variables DBH and D2H were established independently for
each component:

Y = ea(DBH)b + ε (2)

Y = ea
(

D2H
)b

+ ε (3)

When each component’s biomass is modeled independently, the sum of the predicted
biomass for each component may not equal the predicted total biomass, indicating non-
additivity. Recognizing the inherent correlation between each component and the total
biomass, various forms of compatible biomass models have been proposed to ensure
additivity between each component’s biomass and the total biomass. Currently, the additive
model system is considered to offer higher prediction accuracy and greater flexibility in
applications [13], making it easier to generalize the model’s applicability. The additive
model system is based on each component, ensuring that the total biomass equals the sum
of the biomass of each part, thereby achieving additivity between the total biomass and
the individual components. With DBH as a variable, the additive model system can be
outlined as:

y1 = ea1(D)b1 + ε1

y2 = ea2(D)b2 + ε2

y3 = ea3(D)b3 + ε3

y4 = ea4(D)b4 + ε4

y5 = ea1(D)b1 + ea2(D)b2 + ea3(D)b3 + ea4(D)b4 + ε5

(4)

With D2H as a variable, the additive model system can be outlined as:

y1 = ea1
(

D2H
)b1 + ε1

y2 = ea2
(

D2H
)b2 + ε2

y3 = ea3
(

D2H
)b3 + ε3

y4 = ea4
(

D2H
)b4 + ε4

y5 = ea1
(

D2H
)b1 + ea2

(
D2H

)b2 + ea3
(

D2H
)b3 + ea4

(
D2H

)b4 + ε5

(5)

where D is DBH (cm). Y represents the biomass of each component (measured in kilograms),
including trunk biomass ( y1), branch biomass ( y2), leaf biomass ( y3), skin biomass ( y4)
and total aboveground biomass ( y5). Parameter a represents the growth constant coefficient
which reflects the rate of increase of a biological organism. Parameter b represents the
allometric exponent which describes the differential impact of the independent variable on
the biomass. The term ε represents the model error, assumed to follow a normal distribution.

2.2.2. Parameter Estimation Methods

(1) Logarithmic NSUR

When it comes to parameter estimation in an additive model system, the Nonlinear
Seemingly Unrelated Regression (NSUR) method is widely recognized as a reliable ap-
proach [20,21]. This method not only considers the correlation between partial equations
but also ensures compatibility among different models, leading to effective parameter
estimation. NSUR can be viewed as the nonlinear counterpart of Seemingly Unrelated
Regression (SUR) models, which are a type of generalized linear model with a specific error
structure matrix. The formulation of SUR models is represented as follows:

y = Xβ+ e
E(e) = 0

cov(e) = Σ⊗ In

(6)
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where X is a full-rank column matrix, β is the parameter vector, Σ is the error covariance
matrix, e is the error vector, and In represents the n×n identity matrix.

However, a common issue encountered in tree biomass data is heteroscedasticity, char-
acterized by unequal variances in the residuals. Therefore, addressing heteroscedasticity in
variance is crucial for accurate parameter estimation in NSUR models [7,22]. The weighted
regression method is commonly employed to tackle this issue. However, in cases with
small sample sizes, accurately determining weighting functions that capture the underlying
variance pattern of the error terms is difficult. Consequently, the weighted regression
method may not effectively correct for heteroscedasticity in variance.

As an alternative approach, we employed a log transformation method to collectively
estimate the residual variance in our samples. The log transformation is a technique used
to eliminate heteroscedasticity while linearizing the trend of variation [25]. By applying
the log transformation to the data, we can stabilize the variance and achieve homoscedas-
ticity, enabling more reliable parameter estimation in NSUR models. The logarithmic
transformation process is as follows:

Based on Formula (1) mentioned above, we moved ε to the left side of the equation
and took the natural logarithm:

ln(Y− ε) = a + blnX (7)

That is
ln[(Y(1− ε/Y )] = lnY + ln(1− ε/Y) = a + blnX (8)

After making k = ε/Y and considering that k is very small, we use series expansion
and keep the remainder only once, which leads us to the following equation:

lnY ≈ a + blnX + k (9)

To facilitate parameter estimation convergence, model 4 was coded as follows:

lny1 ≈ a1 + b1lnD + k1
lny2 ≈ a2 + b2lnD + k2
lny3 ≈ a3 + b3lnD + k3
lny4 ≈ a4 + b4lnD + k4

lny5 ≈ ln
(

ea1(D)b1 + ea2(D)b2 + ea3(D)b3 + ea4(D)b4
)
+ k5

(10)

and model 5 was coded as:

lny1 ≈ a1 + b1ln(D 2H) + k1

lny2 ≈ a2 + b2ln(D 2H) + k2

lny3 ≈ a3 + b3ln(D 2H) + k3

lny4 ≈ a4 + b4ln(D 2H) + k4

lny5 ≈ ln(ea1(D2H)b1 + ea2
(

D2H
)b2 + ea3(D2H)b3 + ea4(D2H)b4 .

(11)

The biomass models mentioned above were constructed using Stata software (version 17),
and the model parameters were estimated using the NSUR method within the program.

(2) Generalized method of moments (GMM)

GMM is a flexible estimation method that can be applied to a wide range of models
and estimation issues. It allows for the incorporation of various moment conditions that
capture different aspects of the data-generating process. This flexibility makes GMM
suitable for complex models and situations where traditional estimation methods may not
be applicable. In addition, GMM estimation allows for the calculation of robust standard
errors that account for heteroscedasticity and potential correlation at the moment conditions
and helps ensure valid hypothesis tests, confidence intervals, and statistical inference,
even in the presence of heteroscedasticity. Thus, for a system of biomass equations with
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heteroscedastic error terms, GMM is a valuable method to obtain efficient parameter
estimates without specifying the nature of the heteroscedasticity [18] and avoid potential
issues with estimating the heteroscedastic error variance involving a small sample.

To estimate the parameters using GMM, we specified a set of moment conditions
based on theoretical considerations. These moment conditions can be constructed using
instruments, which are variables that are correlated with the endogenous variables but
not directly affected by the error term. The choice of moment conditions and instruments
depends on the specific modeling assumptions and research objectives. The conditional
moment restriction of the equation is

E(Zi′εi) = (1/n)∑n
i=1 Zi′(yi − ŷi) = 0 (12)

where Zi′ = (z1i, z2i . . . . . . zki)
T , zk is the kth instrumental variable of xi, and ŷi is the

estimated value of yi, εi represents the error.
The process of estimating parameters using the Generalized Method of Moments

(GMM) involves three steps. First, it is necessary to formulate moment conditions that
represent the relationship between data and parameters. Second, we have to calculate
the sample moment conditions by averaging the moment conditions over the available
data. Finally, we estimate the parameters by minimizing the discrepancy between the
sample moment conditions and their population counterparts. This is implemented in Stata
software (version 17), using the GMM commands and functions.

2.2.3. Model Assessment and Validation

In order to determine the most suitable parameters estimating method for an addi-
tive model system, we employed statistical measures such as the adjusted coefficient of
determination (R2) and the root mean square error (RMSE) for analysis. The adjusted R2

is a commonly used indicator that quantifies the percentage of the total variation in the
dependent variable explained by the predictor variables, providing insights into how well
the model fits the data. A higher adjusted R2 value indicates a better fit of the regression
model. Moreover, the adjusted R2 accounts for the inclusion of additional independent
variables and penalizes the model for insignificant variables, mitigating the risk of includ-
ing variables based on chance alone [26]. By considering the adjusted R2 in conjunction
with other statistical measures, we can identify the optimal allometric model as:

Adjusted R2 = 1−
(
1− R2)(n− 1)

n− k− 1
(13)

where k is the number of independent variables, n is the sample size, and n − k − 1
represents the degrees of freedom of the regression model.

Root mean square error (RMSE) is commonly used as a standard statistical metric to
evaluate the performance of models in biomass research and it has been widely adopted
for assessing the accuracy of different scientific models. In the biomass field, the RMSE is
frequently presented as the standard measure for quantifying model errors, involving the
errors in applying parameter estimating methods. The errors between the observed and
fitted values were calculated for each system equation of each species following parameter
estimation. In our case, the RMSE accounts for both the magnitude and variability of errors,
giving greater weight to errors with larger absolute values. The computation of the RMSE
involves taking the square root of the average of the squared errors in the dataset.

RMSE =
√

SSE/n =

√
1
n∑n

i=1

(
yi − ŷi

)2 (14)

where, n is the sample size, and yi represents the observed dry weight.
It is important to note that in the Logarithmic NSUR method, the fitted values obtained

from Model 10 using Stata 17 software are logarithmic values of predicted biomass values.
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To obtain the actual predicted biomass values, these logarithmic values need to be back-
transformed. Subsequently, the errors between the observed and predicted biomass values
were calculated for each equation in the system. Finally, the root mean square error (RMSE)
was computed for the additive model system using the Logarithmic NSUR method.

3. Results

Table 2 provides the estimated coefficients and fit indices for the additive Biomass
Equations when the diameter is used as the independent variable. As shown, all coefficients
were found to be statistically significant at a confidence level of 0.05. However, there are
noticeable differences between the two parameter estimation methods: logarithmic NSUR
and GMM. In terms of model fit, all the values of RMSE in Table 2 were significantly
low compared to the biomass weights illustrated in Table 1. This indicates that both the
logarithmic NSUR and GMM methods produced accurate predictions of biomass. However,
the GMM method resulted in smaller residual RMSE values for both the component and
total tree biomass compared to the logarithmic NSUR method.

As shown in Table 2, when considering diameter as the only independent variable in
the system of additive biomass equations, the R2 values for both the logarithmic NSUR and
GMM methods were mostly higher than 0.9, indicating accurate predictions, except for the
leaf component. For the trunk component, R2 values ranged from 0.87 to 0.97, with higher
values observed for the GMM method. Similarly, for the branch component, R2 values
ranged from 0.87 to 0.94, except for Pinus armandii Franch. The R2 values for the leaf
component ranged from 0.42 to 0.89, with the lowest estimate of 0.42 for Betula albosinensis
Burk. For the skin component, R2 values ranged from 0.81 to 0.95, with all values, except
for Quercus aliena var. acuteserrata, surpassing 0.91. For total biomass prediction, R2 values
ranged from 0.91 to 0.98, with higher values observed for the GMM method compared to
the logarithmic NSUR method.

Table 3 provides the estimated coefficients and fit indices for the additive biomass
equations when a combined variable of diameter and tree height is used as the independent
variable. Similar to Table 2, all coefficients were found to be statistically significant at a
confidence level of 0.05. Regarding the fit indices RMSE, the GMM method resulted in
smaller values for both the component and total tree biomass compared to the logarith-
mic NSUR method. The R2 values for both the NSUR and GMM methods were mostly
higher than 0.9, except for the leaf component prediction. For trunk component biomass
prediction, R2 values ranged from 0.94 to 0.98, with higher values observed for the GMM
method, except for Betula albosinensis Burk. During branch component biomass prediction,
R2 values ranged from 0.85 to 0.95, except for Pinus armandii Franch. The R2 values for leaf
component biomass prediction ranged from 0.37 to 0.87, with the lowest estimate being
0.37 (Pinus tabuliformis) obtained via the logarithmic NSUR method. For skin component
biomass prediction, R2 values ranged from 0.84 to 0.96. In addition, when we predicted
total biomass, R2 values ranged from 0.96 to 0.98, with higher values observed during the
application of the GMM method, except for Pinus armandii Franch.

For the four species with 10 or more sample trees mentioned in Table 3, incorporat-
ing tree height into the combined predictor variable alongside diameter generally led to
reduced values of residual RMSE for component and total tree biomass, except for the
leaf component. However, Pinus tabuliformis was an exception, as the RMSE value for the
additive biomass equations utilizing only the independent variable was slightly higher
than the results using a combined variable. Consistently, the inclusion of tree height in
the combined predictor variable with diameter generally yielded higher values of the
generalized R2 for the component and total tree biomass. Except for Pinus tabuliformis, the
R2 value for the equations using only the independent variable was slightly smaller than
that of the combined variable of diameter and tree height.
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Table 2. Estimated coefficients of the system equations (Equation (4)) and fit indices (RMSE and R2)
for the four tree species. D is the only independent variable in the equations.

Species Sample Size Component Method a b RMSE R2

Betula albo-sinensis Burk 10

trunk NSUR 1.8603 2.5765 0.0513 0.9631
GMM 1.4264 2.2027 0.0400 0.9692

branch NSUR 1.7334 3.0736 0.0414 0.9337
GMM 1.3227 2.7414 0.0337 0.9395

leaves NSUR −2.9958 1.5979 0.0055 0.4149
GMM −3.0680 1.3489 0.0051 0.4466

skin NSUR −0.5887 2.3278 0.0078 0.9247
GMM −0.2323 2.6057 0.0072 0.9499

biomass NSUR 0.1268 0.9390
GMM 0.0666 0.9721

Pinus armandii Franch 10

trunk NSUR 1.1876 2.3409 0.0543 0.8887
GMM 1.3671 2.4971 0.0374 0.9275

branch NSUR 0.8120 2.6202 0.0396 0.8003
GMM −0.5767 1.4629 0.0389 0.6217

leaves NSUR −1.6147 2.1965 0.0036 0.8890
GMM −0.8134 2.8260 0.0040 0.8835

skin NSUR −1.4809 1.9923 0.0040 0.9236
GMM −0.1285 3.0929 0.0037 0.9534

biomass NSUR 0.0542 0.9557
GMM 0.0352 0.9725

Pinus tabuliformis 19

trunk NSUR 0.8384 2.2909 0.0258 0.9299
GMM 0.5108 2.0387 0.0202 0.9465

branch NSUR 0.9096 2.8524 0.0158 0.9355
GMM 1.0457 3.0419 0.0160 0.9292

leaves NSUR −1.3830 2.1344 0.0128 0.4710
GMM −0.6217 2.5999 0.0118 0.6613

skin NSUR −1.2904 2.1176 0.0042 0.9075
GMM −1.1018 2.2232 0.0043 0.9178

biomass NSUR 0.0235 0.9831
GMM 0.0214 0.9850

Quercus aliena var.acuteserrata 32

trunk NSUR 1.7998 2.5214 0.0650 0.8720
GMM 1.2567 2.1274 0.0406 0.9178

branch NSUR 2.1272 3.4421 0.0372 0.8859
GMM 1.7138 3.2217 0.0303 0.8706

leaves NSUR −1.2773 2.8147 0.0035 0.7472
GMM −2.1066 2.2038 0.0024 0.7724

skin NSUR −0.4115 2.2054 0.0116 0.8161
GMM −1.2450 1.5934 0.0086 0.8065

biomass NSUR 0.0969 0.9059
GMM 0.0508 0.9552
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Table 3. Estimated coefficients of the system equations (Equation (5)) and fit indices (RMSE and R2)
for the four tree species. D2H is the only independent variable in the equations.

Species Sample Size Component Method a b RMSE R2

Betula albo-sinensis Burk 10

trunk NSUR −1.7730 0.9903 0.0393 0.9757
GMM −1.7023 0.8903 0.0373 0.9736

branch NSUR −2.5918 1.1794 0.0331 0.9514
GMM −2.5974 1.1514 0.0315 0.9504

leaves NSUR −5.2291 0.5994 0.0055 0.4030
GMM −4.9730 0.5635 0.0051 0.4866

skin NSUR −3.8904 0.8935 0.0096 0.8796
GMM −3.9278 1.0349 0.0081 0.9341

biomass NSUR 0.0996 0.9572
GMM 0.0617 0.9767

Pinus armandii Franch 10

trunk NSUR −1.9122 0.9765 0.0358 0.9407
GMM −1.8633 1.0186 0.0268 0.9608

branch NSUR −2.5605 0.7698 0.0376 0.7274
GMM −2.4700 0.5993 0.0414 0.5864

leaves NSUR −4.4616 0.6909 0.0048 0.7422
GMM −4.3552 0.9209 0.0042 0.8550

skin NSUR −4.1144 0.8052 0.0037 0.9219
GMM −4.0488 1.0988 0.0033 0.9581

biomass NSUR 0.0350 0.9754
GMM 0.0357 0.9709

Pinus tabuliformis 19

trunk NSUR −2.1608 0.9388 0.0130 0.9776
GMM −2.1705 0.8901 0.0122 0.9781

branch NSUR −2.8422 1.1549 0.0216 0.8524
GMM −2.9789 1.4065 0.0196 0.8890

leaves NSUR −4.1968 0.8587 0.0144 0.3652
GMM −4.0638 1.1956 0.0138 0.5692

skin NSUR −4.0725 0.8610 0.0051 0.8421
GMM −4.0219 1.0042 0.0051 0.8861

biomass NSUR 0.0304 0.9651
GMM 0.0283 0.9717

Quercus aliena var.acuteserrata 32

trunk NSUR −1.7446 0.9965 0.0344 0.9458
GMM −1.7571 0.9929 0.0302 0.9534

branch NSUR −2.6926 1.3784 0.0351 0.8540
GMM −2.8747 1.6460 0.0324 0.8758

leaves NSUR −5.2266 1.1334 0.0030 0.7533
GMM −5.2200 1.0228 0.0025 0.7559

skin NSUR −3.5126 0.8705 0.0082 0.8713
GMM −3.5004 0.7437 0.0075 0.8533

biomass NSUR 0.0510 0.9607
GMM 0.0446 0.9675

Figure 1 illustrates the fitted curves for all predicted biomass components and total tree
biomass using logarithmic NSUR and GMM methods based on the system equations with
the diameter as the independent variable. The measured data of tree samples considered
true values are also plotted in the figure. Upon comparison, it can be observed that the
additive biomass equations generally resulted in a good fit. The fitting was particularly
satisfactory for trunk and branch components, as well as for skin components, while the leaf
component exhibited larger discrepancies between the predicted and measured biomass.
We also noticed that the fitting between the predicted and measured values was excellent
for total tree biomass.
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Similarly, Figure 2 shows the fitting curve of aboveground biomass when we use the
logarithmic NSUR and GMM methods based on the system equations with the combined
variable of diameter and tree height. Among the four species, the results are better than
that with the independent variable. The fitting was similar for trunk, branch, and skin
components, but once again, the leaf component showed a greater deviation between the
predicted and measured biomass. For total tree biomass, the fitting between the predicted
and measured values was favorable.
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4. Discussion

In response to the current limitation when it comes to analyzing additive biomass
model parameters and handling the difficulty of obtaining large tree samples due to poten-
tial damage, this study focused on examining such parameters based on small sample data.
Two model systems were established, one using diameter at breast height as the variable
and the other incorporating both tree height and diameter at breast height. The NSUR
method and GMM method were employed to analyze the parameters of these models.
Comparing the results of RMSE and R2 presented in Tables 2 and 3, it is evident that both
methods yield satisfactory goodness of fit and estimation precision for the additive biomass
models. The GMM method generally exhibited superior fitting for the biomass components
and total tree biomass. Additionally, the additive biomass equations with the combined
variable method outperformed the equations with diameter as the independent variable,
as evidenced by the findings in Figures 1 and 2. Overall, among the four approaches
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considered in this study, the GMM method with the combined variable is the most suitable
approach for enforcing the additivity of different components. The NSUR method with
the combined variable follows as the next favorable option. The GMM method with only
the independent variable and the logarithmic NSUR method with only the independent
variable rank subsequently in terms of suitability.

These findings provide evidence for the reliability of using the log transformation
method in parameter estimation for NSUR models when dealing with small tree samples.
Prior research by Bi et al. [18] has also emphasized the effectiveness of employing log-
transformed data in additive biomass model systems, as it successfully addresses the
challenges associated with accurately representing the underlying pattern of residual
variance in biomass components. Notably, our study took a step further by combining the
log transformation method with NSUR models using small samples to analyze biomass,
and our results convincingly demonstrate the reliability and effectiveness of this approach.
Similarly, our study confirmed the reliability of the GMM method in handling small tree
samples, aligning with the findings of Wang et al. [27], who demonstrated that the GMM
method efficiently generates parameter estimates under heteroscedastic conditions without
requiring the specification of the heteroscedasticity nature.

In line with the study of Wang et al. [27], our study also observed superior fitting
for tree biomass using the GMM method, particularly when dealing with small sample
data. Wang’s study specifically highlighted the GMM method’s ability to provide accurate
biomass estimation. However, they focused on independently modeled equations rather
than an additive model system that considers the relationship between the sum of predicted
biomass for each component and the predicted total biomass. The reliability and accuracy
of the GMM method in this work may be attributed to its ability to address endogeneity
and heteroscedasticity, resulting in consistent, efficient, and robust parameter estimates.
Moreover, the GMM method can handle complex data structures and identify underlying
patterns in the data. Therefore, it is recommended over the logarithmic NSUR method for
estimating parameters in additive biomass equations.

According to the results, it is evident that incorporating tree height in conjunction
with diameter as a combined predictor variable generally leads to more accurate biomass
estimates compared to equations that solely rely on diameter as the independent variable.
This finding is consistent with previous studies, which have reported that incorporating
tree height in the predictor variable typically improves the accuracy of estimating stem and
total tree biomass, although the enhancement may be less pronounced for branch and leaf
biomass [28–30]. The results of our study further corroborate the notion that including tree
height in the predictor variable enhances the accuracy of prediction (refer to Tables 2 and 3).
Taking into account the parameter analyzing methods mentioned earlier, the GMM method
with a combined variable is the most suitable approach to ensure additivity among different
biomass components for the small samples involved in this study.

5. Conclusions

Based on a small sample dataset comprising four tree species in the Xiaolongshan area
of Gansu Province, we developed two additive biomass model systems using the inde-
pendent diameter and the combined variable that comprises diameter and tree height. By
employing the logarithmic NSUR method and GMM method, we estimated the parameters
of these models and compared the results using fit indices and fitted curves. We outlined
the following conclusions: (1) Both the GMM and logarithmic NSUR methods provided
satisfactory goodness of fit and estimation precision for the additive biomass models, with
the GMM method demonstrating slightly more accurate results. (2) Incorporating tree
height into the predictor variable improved the estimation accuracy for total tree biomass
and most component tree biomass. Overall, our study suggests that the GMM method
with the combined variable is the most suitable approach for ensuring additivity among
different biomass components when dealing with small sample sizes.
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Several areas requiring further research have been identified. Firstly, based on the
insights gained from this research, in addition to tree height, there are other variables such
as tree crown width and tree age which can be considered predictors in the biomass models.
By incorporating these additional variables, the accuracy of the biomass equation can be
improved, thereby enhancing its precision. Secondly, if large tree samples can be obtained,
it is helpful to compare the accuracy of biomass estimation models under different sample
sizes, and further verify the reliability of the GMM method and logarithmic NSUR method
with small sample sizes. Thirdly, alternative modeling techniques such as the Bayesian
method can be considered to solve the problem of small sample estimation accuracy.

Author Contributions: Conceptualization, J.W.; methodology, N.X., Y.Q., L.Z., R.C. and H.R.; formal
analysis, N.X., Y.Q., L.Z., R.C. and H.R.; investigation, N.X., Y.Q., L.Z., R.C. and H.R.; writing—
original draft preparation, N.X.; writing—review and editing, N.X., Y.Q., L.Z. and J.W.; visualization,
N.X., Y.Q., L.Z., R.C., H.R. and J.W.; supervision, J.W.; funding acquisition, N.X. and J.W. All authors
have read and agreed to the published version of the manuscript.

Funding: This research was funded by the Fundamental Research Funds for the Beijing Natural
Science Foundation Program (grant numbers 8222052) and the Natural Science Foundation of China
(grant numbers 42071342, 42101473, 42171329).

Data Availability Statement: Not applicable.

Acknowledgments: We are grateful to the staff of Beijing City Management Municipal Institute and
the teachers of the Laboratory of Forest Management and “3S” Technology, Beijing Forestry University.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Dong, L.; Li, F. Stand-level biomass estimation models for the tree layer of main forest types in East Daxing’an Mountains, China.

Chin. J. Appl. Ecol. 2018, 29, 2825–2834.
2. Asrat, Z.; Eid, T.; Gobakken, T.; Negash, M. Aboveground tree biomass prediction options for the dry Afromontane forests in

south-central Ethiopia. For. Ecol. Manag. 2020, 473, 118335. [CrossRef]
3. Liang, R.-T.; Wang, Y.-F.; Qiu, S.-Y.; Sun, Y.-J.; Xie, Y.-H. Comparison of artificial neural network with compatible biomass model

for predicting aboveground biomass of individual tree. Chin. J. Appl. Ecol. 2022, 33, 9–16.
4. Gao, Y.; Xie, L.; Hao, Y.; Dong, L. Construction and precision analysis of individual tree biomass model of Larix olgensis

considering random effects. J. Appl. Ecol. 2023, 34, 333–341.
5. Luo, Y.; Zhang, X.; Wang, K.; Zhu, J.; Hou, Z.; Zhang, Z. Forest biomass estimation methods and their prospects. Sci. Silvae Sin.

2009, 45, 129–134.
6. Cao, L.; Liu, X.; Li, H.; Lei, Y. Biomass Growth Models for Evergreen Broad-leaved Forests in Guangdong. For. Res. 2020, 33,

61–67.
7. Wang, J.; Li, F.; Dong, L. Additive aboveground biomass equations based on different predictors for natural Tilia Linn. Chin. J.

Appl. Ecol. 2018, 29, 3685–3695.
8. Buendia, E.; Guendehou, S.; Limmeechokchai, B.; Pipatti, R.; Rojas, Y.; Sturgiss, R.; Tanabe, K.; Wirth, T.; Romano, D.; Witi,

J.; et al. Agriculture, Forestry and Other Land Use (AFOLU). In 2019 Refinement to the 2006 IPCC Guidelines for National
Greenhouse Gas Inventories. préparé par le Programme pour les inventaires nationaux des gaz à effet de serre 4; 110p. Available online:
https://www.ipcc.ch/report/ar5/wg3/agriculture-forestry-and-other-land-use-afolu/ (accessed on 10 January 2023).

9. Zeng, W.; Tang, S. Using measurement error modeling methodto establish compatible single-tree biomass equations system. For.
Res. 2010, 23, 797–803.

10. Fu, L.; Lei, Y.; Wang, G.; Bi, H.; Tang, S.; Song, X. Comparison of seemingly unrelated regressions with error-in-variable models
for developing a system of nonlinear additive biomass equations. Trees 2015, 30, 839–857. [CrossRef]

11. Xie, L.; Fu, L.; Widagdo, F.R.A.; Dong, L.; Li, F. Improving the accuracy of tree biomass estimations for three coniferous tree
species in Northeast China. Trees 2022, 36, 451–469. [CrossRef]

12. Lei, Y.; Fu, L.; Affleck, D.L.; Nelson, A.S.; Shen, C.; Wang, M.; Zheng, J.; Ye, Q.; Yang, G. Additivity of nonlinear tree crown width
models: Aggregated and disaggregated model structures using nonlinear simultaneous equations. For. Ecol. Manag. 2018, 42,
372–382.

13. Cao, L.; Li, H. Comparison of two compatible biomass models: A case study from three broadleaved tree species in Guangdong.
Chin. J. Ecol. 2019, 38, 1916–1925.

14. Dong, L.; Zhang, L.; Li, F. Additive biomass equations based on different dendrometric variables for two dominant species (Larix
gmelini Rupr. and Betula platyphylla Suk.) in natural forests in the Eastern Daxing’an Mountains, Northeast China. Forests 2018,
9, 261. [CrossRef]

https://doi.org/10.1016/j.foreco.2020.118335
https://www.ipcc.ch/report/ar5/wg3/agriculture-forestry-and-other-land-use-afolu/
https://doi.org/10.1007/s00468-015-1325-x
https://doi.org/10.1007/s00468-021-02220-w
https://doi.org/10.3390/f9050261


Forests 2023, 14, 1655 14 of 14

15. Zhao, D.; Westfall, J.; Coulston, J.; Lynch, T.B.; Bullock, B.P.; Montes, C.R. Additive bio-mass equations for slash pine trees:
Comparing three modeling approaches. Can. J. For. Res. 2019, 49, 27–40.

16. Liu, X.; Jiang, C.; Xu, R.; He, X.; Qi, M. Comparison of Methods to Construct Compatible Individual Tree Biomass Models-A Case
Study of Cyclobalanopsis glauca. Sci. Silvae Sin. 2020, 56, 164–173.

17. Cai, G. Power consumption and passenger flow of Qiaochengdong station in Shenzhen. Urban Mass Transit 2009, 9, 73–75.
18. Bi, H.; Turner, J.; Lambert, M. Additive biomass equations for native forest trees of temperate Australia. Trees 2004, 18, 467–479.

[CrossRef]
19. Wang, J.; Lv, C.; Gao, H.; Zhang, L.; Zhang, F.; Feng, Z. Improved allometric equation for aboveground biomass: A case study of

four tree species in China. Balt. For. 2017, 23, 636–643.
20. Soares, M.L.G.; Schaeffer-Novelli, Y. Above-ground biomass of mangrove species. I. Analysis of models. Estuar. Coast. Shelf Sci.

2005, 65, 1–18. [CrossRef]
21. Shen, Y.; Sun, X.; Zhang, J.; Ma, J. Study on the Individual Tree Biomass of Larix kaempferi Plantation in Xiaolong Mountain,

Gansu Province. For. Res. 2011, 24, 517–522.
22. Du, W. Study on the Individual Tree Biomass of Pinus tabuliformis in Xiaolong Mountain, Gansu Province. Gansu Sci. Technol.

2012, 28, 153–155.
23. Bi, H.; Murphy, S.; Volkova, L.; Weston, C.; Fairman, T.; Li, Y.; Law, R.; Norris, J.; Lei, X.; Caccamo, G. Additive biomass equations

based on complete weighing of sample trees for open eucalypt forest species in south-eastern Australia. For. Ecol. Manag. 2015,
349, 106–121. [CrossRef]

24. Luo, Y.; Wang, X.; Ouyang, Z.; Lu, F.; Feng, L.; Tao, J. A review of bio-mass equations for China’s tree species. Earth Syst. Sci. Data
2020, 12, 21–40. [CrossRef]

25. Greene, W. Econometric Analysis, 4th ed.; Prentice Hall: Upper Saddle River, NJ, USA, 1999.
26. Mendenhall, W.; Beaver, R.; Beaver, B. Introduction to Probability and Statistics; Duxbury Press: North Scituate, MA, USA, 2006.
27. Wang, J.; Zhang, L.; Feng, Z. Allometric equations for the aboveground biomass of five tree species in China using the generalized

method of moments. For. Chron. 2018, 94, 214–220.
28. Williams, R.; Zerihun, A.; Montagu, K.; Hoffman, M.; Hutley, L.B.; Chen, X. Allometry for estimating aboveground tree biomass

in tropical and subtropical eucalypt woodlands: Towards general predictive equations. Aust. J. Bot. 2005, 53, 607–619.
29. Antonio, N.; Tome, M.; Tome, J.; Soares, P.; Fontes, L. Effect of tree, stand, and site variables on the allometry of Eucalyptus

globulus tree biomass. Can. J. For. Res. 2007, 37, 895–906. [CrossRef]
30. Li, H.; Zhao, P. Improving the accuracy of tree-level aboveground biomass equations with height classification at a large regional

scale. For. Ecol. Manag. 2013, 289, 153–163. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

https://doi.org/10.1007/s00468-004-0333-z
https://doi.org/10.1016/j.ecss.2005.05.001
https://doi.org/10.1016/j.foreco.2015.03.007
https://doi.org/10.5194/essd-12-21-2020
https://doi.org/10.1139/X06-276
https://doi.org/10.1016/j.foreco.2012.10.002

	Introduction 
	Materials and Methods 
	Study Site and Samples 
	Methodologies 
	Additive Biomass Equations 
	Parameter Estimation Methods 
	Model Assessment and Validation 


	Results 
	Discussion 
	Conclusions 
	References

